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Abstract 

The Einstein field equations are solved subject to the  assumpt ions  tha t  (1) the  source o f  
the  gravitational field is a non-rotat ing perfect fluid, (2) the  Weyl tensor is algebraically 
special, (3) the  repeated principal null direction is tangent  to a geodesic, shearfree and 
twistfree congruence,  and  is parallely transferred along the  fluid congruence.  The sol- 
ut ions in which the  l ine-element admits  a mult iply transitive group of  mot ions  have been 
studied by  Stewart and Ellis; the  remaining ones are new, and appear to represent  
inhomogeneous  anisotropic cosmological models.  

1. Introduction 

Solutions of the Einstein field equations with a perfect fluid as source are 
of physical interest as cosmological models and as models for the interior of 
stars. The problem of finding exact solutions of these equations is usually 
approached by assuming the existence of a group Gr of motions with r >t 3 
(see for example Heckmann & Schucking, 1962; Stewart & Ellis, 1968; Ellis & 
MacCallum, 1969, and the many references given there). In general, the Weyl 
tensor of such space-times, regarded as representing the free gravitational field 
(Szekeres, 1966), is algebraically general. However, in the case that the group 
of motions is multiply transitive on some subspace, considered by Stewart & 
Ellis (1968), the Weyl tensor is algebraically special, in fact of type [22]. In 
addition the two repeated principal null directions are tangent to geodesic and 
shearfree null congruences (Wainwright, 1970). The solutions in which these 
congruences are also twistfree but expanding constitute class II of Stewart & 
Ellis (1968), and are of physical interest: they include the solution corre- 
sponding to the general spherically symmetric fluid source, the special class of 
homogeneous, anisotropic model universes studied by Kompaneets & Chernov 
(1964), Zel'dovich (1965), Doroshkevich (1965), Kantowski & Sachs (1966), 
Thorne (1967) and others [see Vajk & Eltgroth (1970) for a detailed survey], 
and certain inhomogeneous model universes used by Eardley, Liang & Sachs 
(1972) in their study of cosmological singularities. 
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In view of these considerations, it is natural to attempt a systematic dis- 
cussion of the Einstein field equations 

Rab -- ½Rgab = -- Tab (1.1) 

subject to the following conditions: 

Condition I 
Space-time admits a geodesic, shearfree, twistfree, expanding null con- 

gruence with tangent field k a, i.e. 

ka;bk b = 0 k[a;bkel = 0 
(1.2) 

(ka;b + kb;a)td ;b = (ka;a) 2 ~ 0  

with respect to an affine parameter. 

Condition 11 
The tangent field/c a in I is a repeated principal null direction of the Weyl 

tensor: 

k[e Calbcakb k c = 0 (1.3) 

Condition 11I 
The source of the gravitational field is a perfect fluid, with energy tensor 

Tab = (A + p)uaub - Pgaa (1.4) 

and the fluid velocity u a, rest energy density A and pressure p satisfying 

blabla = 1 (1.5) 

A + p > 0 (1.6) 

We note that the analogous sourcefree problem (i.e. Rab = 13) was solved by 
Robinson & Trautman (1962): in this case condition II is a consequence of I 
in view of the Goldberg-Sachs theorem (see Pirani, 1964). 

In order to be able to classify the solutions in the present problem, we have 
been compelled to impose the following two additional conditions: 

Condition I V  
The direction of the tangent field k a in I is paraIlely transferred [see Pirani 

(1964), p. 325] along the fluid congruence, i.e. 

ka;bu b = f k  a ~ k[~kbl ;c uc = 0 (1.7) 

Condition V 
The fluid is non-rotating, i.e. 

U[a;bUc] = 0 ( 1 . 8 )  

We note that both IV and V are satisfied by the subclass of solutions admit- 
ting a multiply transitive group of motions referred to earlier. 

The purpose of this article is to classify the solutions of the Einstein field 
equations subject to conditions I-V. The procedure depends on establishing that 
either the line-element admits a multiply transi~ve group o f  motions (and 
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hence is in class II of Stewart & Ellis, 1968) or the expansion p =- ½ka;a o f  the 
preferred null congruence is given by one o f  the expressions 

p=  - ½ r - '  (1.9) 

p = _r(r  2 _ k2)  - 1, k -= const. (1.1 O) 

where r is a suitably chosen affine parameter corresponding to the tangent 
field k a in L In proving this result (see Theorem 5.1) one has to make use of 
most of the information contained in the field equations. This is in contrast 
to the source-free problem (Robinson & Trautman, 1962) where it follows, 
using only the field equation Rabkak b = 0 (k a is the tangent field of the 
preferred null congruence), that the expansion is of the form 

p = - r  -1 (1.1 1) 

independently of whether or not the line-element admits a multiply transitive 
group of motions. 

The derivation of the general line element is carried out in two stages in an 
attempt to clarify the roles of the various conditions. In the first stage we do 
not make use of the field equations, but instead impose I and II and the follow- 
ing purely geometrical restrictions on the Ricci tensor: 

Condition III* 

k [ a k b l  ; d R d c  = fk[akbl; c (1.12) 

Rabkak b < 0 (1.13) 

where/c a is the tangent field in I, and f is some function. 
This condition is compatible with the presence of a perfect fluid satisfying 

(1.6), but is weaker than III and IV together. In fact i f I  and III hold, then 
(1. 7) and (1.12) are equivalent, as follows directly from (1.I) and (1.4). 

The line-element characterized by conditions I, II and III*, obtained in 
Sections 2 and 3 using the spin coefficient formalism of Newman & Penrose 
(1962), will be referred to as the generalized Robinson-Trautman line-element 
(see Theorem 2.1) as it is perhaps of interest in itself. The spin coefficients, 
and tetrad components of the Ricci and Weyl tensors for this line-element are 
listed in Section 4, and in Section 5 the preceding results are used to simplify 
the field equations (1.1) subject to conditions I-V. In the case that the line- 
element admits a multiply transitive group of motions, the field equations 
reduce to an underdetermined system of two partial differential equations for 
three functions of two variables. Otherwise we obtain a system of two 
(respectively one) partial differential equations for two (respectively one) 
functions of three variables, depending on whether the expansion p is given 
by (1.9) or (1.1t3). 

We note that one other result analogous to Theorem 5.1 is known. Oleson 
(1971) proved that for any solution of the Einstein fluid equations with a 
non-rotating perfect fluid as source, if the Weyl tensor admits a repeated 
principal null direction of multiplicity 4 (i.e. is of type [4]), then this direction 
is tangent to a geodesic and twistfree null congruence, whose expansion is given 



42 J. WAINWRIGHT 

by precisely one of the expressions (1.9), (1.10); in this case however, the shear 
of the null congruence is non-zero. 

As regards techniques for dealing with the type of problem under con- 
sideration here, the spin coefficient formalism of Newman & Penrose (1962) 
is particularly convenient. In the remainder of this paper familiarity with this 
formalism on the part of the reader is assumed. Our conventions for the 
Riemann, Ricci and Weyl tensors are those of Newman & Penrose. 

2. The Generalized Robinson-Trautman Line-Element 

Robinson & Trautman (1962) [see p. 465, equation (4)] have shown that 
for any space-time satisfying condition I the line-element can be written in the 
form 

ds 2 = - ½ G  -z  d z d ~ + 2 d u ( d r - ½ W d z -  ½ W d Y -  U d u )  (2.t)  

where G, U are arbitrary real functions, and W is complex. With u = x 1, r = x 2, 
z = x 3 + ix 4, the tangent field k a of the preferred null congruence is given by 

k a = 6~, k a = 6a a (2.2) 

The null geodesics thus lie in the null hypersurfaces u = constant, and r is an 
affine parameter along these geodesics. 

In terms of this coordinate system we can write down and characterize the 
generalized Robinson-Trautman line-element. 

Theorem 2.1. The line-element of a space-time can be written in the form 

as 2 = -½P-2x2  dz d2 + 2 du(dr - Udu)  (2.3) 

with 

U = rOu In P + U°(z,  ~, u) + S(r, u) 

and (2.4) 

subject to 

e =  P(z, ~, u), × = ×(r, u) 

Or× 6 O, X -1 Or OrX ~< 0 (2.5) 

if and only if the space-time satisfies conditions I, II and III*. 
The theorem states essentially that conditions I, II and III* separate out 

the r-dependence from the (z, 5)-dependence, but not from the u-dependence, 
in the line-element. However, apart from (2.5), the specific r-dependence of X 
and S is unrestricted. 

For the purpose of comparison, recall that condition I together with the 
vacuum field equations 

Rab = 0 
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enables one to completely separate out the r-dependence. (Not all of  these 
field equations are required. See Robinson & Trautman, 1962; Trim & 
Wainwright, i97 I). In fact under these conditions, the r-dependence of the 
line-element is explicitly determined according to 

X = r, S = m ( u ) r  -1 

(see Robinson & Trautman, 1962). 
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3. P r o o f  o f  the Theorem 

The proof  of  Theorem 2.1 is based on the spin coefficient formalism of  
Newman & Penrose (1962), with which we assume the reader is familiar. The 
Ricci and Bianchi identities in their most general form, as given in Pirani (1964), 
are labelled Ii-I~s and I Iwl I9  respectively. For convenience we list the 
commutators:  

A D - D A = ( 7 + ~ ' ) D + ( e + e - - ) A - ( r + ' ~ ) - ~  - (g + rr)~ (3.1) 

6 D - D 6  = ( 6 + 1 3 - - ~ ) D + K A - - o S - - ( f i + e - - ~ ) 6  (3.2) 

6A - A6 = - ~ D  + (r  - S - ~)A + X5 + (p - 3' + 3')6 (3.3) 

g5 - 5g : @ - # ) D  + ~ - p)A - (& - t3)g - (j3 - c05 (3.4) 

Our starting point is the line-element (2.1) which, as mentioned in Section 2, 
is a consequence of I. A convenient null tetrad for this line element is obtained 
by choosing 

n a = ~ + U ~ ,  
(3.5) 

m a = G(6a3 + i6a4 + W6~) 

together with the preferred null vector field k a as given by (2.2). Firstly, 
condition I restricts the spin coefficients associated with this tetrad according 
to 

~: = o ' = p -  ~ = e + ~ = 0 ,  p ~ O  (3.6) 

Secondly, condition II restricts the Weyl tensor tetrad components according 
to 

~ o  = ~ 1  = 0 (3.7) 

Finally a straightforward calculation shows that when I is satisfied condition 
III* is equivalent to 

T~bo o -- pdPlo = O, ~&baO -- pd#20 = 0 (3.8) 

~2dPoa -- 2p;rcbll + p2(D21 = 0 (3.9) 

~bO0 ~> 0 (3.10) 
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The specific form (2.2), (3.5) of the null tetrad places restrictions on the 
spin coefficients in addition to (3.6). In fact, applying the commutators (3.1)- 
(3.4) to ~ = x 1, x 2, x 3, x 4 successively, one finds 

e=  X = T  +rr= r - a -  ~ = O  (3.11) 

# - f i  = 2('1, - q )  ( 3 . 1 2 )  

together with the following equations relating the non-zero spin coefficients 
to the metric components: 

G D W  = - 2 r ,  G ( g W  - 6W) = -(/a - fi) (3.13) 

D G  = pG, A G  = -½(U + fi)G, gG = (a - f l )G (3.14) 

D U =  - ( 7  + q), 6 U -  G A W =  --F (3.15) 

To proceed further we need the general coordinate transformation which 
preserves the form (2.1) of the line-element. This has been given by Robinson 
& Trautman (1962) (see p. 465) as 

u' = f (u) 

r' = [ f ' (u ) l -b  + g(z, ~, u) (3.16) 
z '=h(z ,  u) 

In order to preserve the form (2.2), (3.5) of the null tetrad, this must be com- 
bined with a tetrad transformation of the form 

ka* = R k  a 

n a* = R - i n  a - T m  a - ~mm a + R T ~  (3.17) 

m a* = eiS(m a _ RT 'k  a) 

wi th  

R = f ' ( u ) ,  e is \ ~ ]  (3.18) 

and with T related to h (z, u) according to 

T g h  + ~ h  = 0 (3.19) 

as is easily verified. Note that by (3.16), h has to satisfy 

Dh = 6h = 0 (3.20) 

It is easily verified using (3.5), (3.11) and (3.14) that the system of equations 
(3.19), (3.20) has a non-trivial solution for h provided that the function T 
satisfies 

D T + p T = O ,  6 T + ( 2 ~ - z ) T = O  (3.21) 
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The freedom contained in (3.16)-(3.19) can in fact be used to transform 
the function W in the line-element to zero. Under (3.16) with f ' (u)  = 1, W 
transforms according to 

W' = W + ~eg (3.22) 

where 

20 z = ~/~x 3 - i~/3x 4, 2 ~  = O/bX 3 + i ~ / ~ X  4 

Since g = g(u, z, ~) the integrability conditions for W' = 0 are 

OrW=O, O z W - 3 ~ W = O  

i.e. 

DW = 0, g W -  6 W = 0 (3.23) 

in terms of  the Newman-Penrose differential operators. Thus, by (3.13), we 
have to show that 7- and # - fi can be transformed to zero. 

Under (3.17) r transforms according to 

7"* = e i S ( r  + TO) 

Using the Ricci identities I i ,  I3, I l l  and 116 , and the assumptions (3.7) and 
(3.8), it follows that the choice T = - r / p  satisfies the conditions (3.21). Thus 
we may use the combined coordinate and tetrad freedom to transform 

r = 0 =~a + fi = 0 (3.24) 

This is one of  the steps of  the proof where assumption III* plays a crucial 
role. The Ricci identities I 3 and 116, with (3.7), now imply 

¢bol = ~o2 = 0 (3.25) 

Furthermore, by I n 

60 = 0 (3.26) 

which when substituted in the commutator  (3.4) (using p =/5) implies 

(11 - f i ) D p  = 0 

However from I1, using (3.10) and the fact that p 4: 0, one concludes that 
Dp ~ O, so that 

/2 = fi => T = T (3.27) 

Equations (3.13) thus reduce to the integrability conditions (3.23), and we 
can use the coordinate freedom to transform 

W = 0 (3.28) 

Note that in order to preserve (3:24) and (3.28), the combined tetrad and 
coordinate freedom (3.16), (3.17) must be restricted by 

3u h = O, 3zg = 3gg = 0 =* T = 0 (3.29) 
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The key to the remainder of the proof (and in fact the remainder of the 
paper) is the introduction of a real potential function 

× = x(r, u) 

such that the expansion is given by 

P = - X  -1 ~rX (3.30) 

This is made possible by the condition (3.26), which with (3.28) ensures that 
p = p(r,  u).  Note that X is not uniquely determined: the freedom in the choice 
of X is described by the transformation 

2 = l ( u ) .  × (3.31) 

The first of equations (3.14) can now be integrated to yield 

G = PX -1 (3.32) 

where Pis an arbitrary function of u, z, 5. In addition, using (3.30) the Ricci 
identity 11 implies 

alP00 = --X -1 0r OrX (3.33) 

so that × satisfies the second of conditions (2.5) by virtue of the assumption 
(3.10). 

In order to complete the proof of the sufficiency, we have to show that the 
function Uhas the form (2.4). This is essentially a consequence of the con- 
dition (3.9), which, with (3.24), simplifies to 

~12 = 0 (3.34) 

Thus, using equations (3.11), (3.24) and (3.27), the Ricci identity I~5 reduces 
to 

87 + A~ = -- /~ (3.35) 

Furthermore, by means of (3.14), (3.15), (3.24) and (3.27) the spin coefficients 
a, 7 and p can be written in the form 

a = X -1 ~P ,  7 = -½ ~rU 
(3.36) 

p = - p U -  3 u l n P +  Ou l nx  

Using equations (3.32) and (3.36), equation (3.35) reduces to 

Oz 0 r ( U -  r Ou In P) = 0 

Since U -  r Ou In P is real, this implies that U is of the form (2.4), as required. 
Note that the decomposition (2.4) for U does not define U ° and S uniquely. 
The freedom in chioce of U ° and S is described by the transformation 

~= s + s(u) 
(3.37) 

&o= U o_  s(u) 

This completes the proof of the sufficiency. 
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The proof of the necessity is essentially trivial. Assume a line element of 
the form (2.3)-(2.5). A suitable null tetrad is 

= ~ ,  n ~ = 8~ + va~ 

m a : p x - I ( 6 ~  + i ~ )  

One can express the spin coefficients in terms of P, X and Uusing the com- 
mutators, and the tetrad components of the Weyl and Ricci tensors in terms 
of the spin coefficients using the appropriate Ricci identities. One finds that 
conditions I, II, III* hold, in the form (3.6)-(3.10). 

4. The Weyl and Ricci Tensors 

The Ricci identities which are not satisfied identically by the line-element 
(2.3)-(2.5), namely I1, I6, 19, I1o, Ia2, I14, Ia7 express the non-zero com- 
ponents of the Weyl and Ricci tensors, namely q2, q~3, ~4, Ooo, On,  022, A 
in terms of the spin coefficients, which in turn are expressed in terms of the 
metric components. Before listing these formulae, we summarize the result 
obtained so far for the generalized Robinson-Trautman line-element of 
Section 2. The nult tetrad (2.2), (3.5) has been simplified to the form 

k a = a~ ,  n a = a~ + U ~  
(4.1) 

rn" = p × - l ( ~  + i ~ )  

with U given by (2.4). The spin coefficients associated with this tetrad are 

K = a = p - ~ = 0  (4.2) 

e=lr=r=~=a+~=U-/~=3 ' - '~=0 (4.3) 
p = --O r in X, ot = X -1 azP (4.4) 

1 0 7 = - 7 (  u l n e +  OrS) (4.5) 

¢ = ( - 1  +rarlnX)Ou lnP+Or ln×(U ° + S ) + a u  ln× (4.6) 

v = - 2Px-I(r  0z 3u lnP  + 3zU °) (4.7) 

These expressions are obtained from (3.30), (3.36) and (3.15), using (3.28), 
(3.32) and (2.4). 

The Ricci tensor components are 

O01 = 0I)02 = 0I)12 = 0 (4.8) 

d;'oo = --X -I Or 3r X (4.9) 

2 0 n  = - ½  Or OrS + p(pr + 1)3 u lnP  + p2(S + U °) 

- P  3u in X + X -2K (4.10) 

6A = ½ Or OrS - 20 OrS + (U ° + S)(p 2 - 2000) + x-ZK 

+ [P + r(P 2 - 2000)] 0u In P + ×-2(2× 3u 3rX + OuX 3r×) (4.11) 
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with 
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q~22 = U209oo + p2 [ - rx -2  Ou (P-2K) + p Ou(p-2U O) 

-4X  -2 Oz OeU ° - ½(1 + rp)Ou Ou P-2] -- 2UOx -2 Ou OrX 

+ O u l n P ( - O r S -  2pS + 3 O u In X - 2rx -t  Or Ou×) 

+ X-I(-OrX OuS - 2S Ou OrX - bu OuX + OuX OrS) (4.12) 

K = 4P 2 a z ae lnP  (4.13) 

The Weyl tensor components are 

'I~ o = '-Iq = 0 ( 4 . 1 4 )  

'1~2 = -½ Or OrS + A - ~ n  (4.15) 

~3 = -2x -1p[p  Oz U° + (1 + rO)Oz Ou lnP] (4.16) 

~4 =-4X-~[rOz(  P2 Oz Ou lnP) + 0z(P 2 OzU°)] (4.17) 

Note that the dependence of ~t'3 and 'Iz 4 on the affine parameter r along the 
preferred null congruence is completely determined by the potential function 
x(r, u), defined by equation (3.30). 

To conclude this section we summarize the combined coordinate and 
tetrad freedom which preserves the form of the line-element (2.3)-(2.5) and 
the tetrad (4.1): 

u' = f (u)  (4.18a) 

r'= [ f ' (u) l - tr  + g(u) (4,I8b) 

z' = h (z) (4.18c) 

k a* = f ' ( u ) k  a (4.19a) 

n a*= [f'(u)]-ln a (4.19b) 

[ h'(z)] 1/2ma (4.19c) m°*= 

These equations *bllow from (3.16)-(3. t8) and (3.29). 

5. Perfect Fluid Space-Times 

We are now in a position to return to the problem posed in the introduction: 
solve the Einstein fieM equations (1.1) subject to the conditions I-  K The 
following theorem enables one to deal systematically with this problem. 

Theorem 5.1. For any solution of the Einstein field equations satisfying 
conditions I-V, the expansion of the preferred null congruence is given, in 
terms of a suitably chosen affme parameter r along the congruence, by 

p = _½r -1 
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or  

p = - r ( r  2 - k 2 )  -1, k = const. 

provided that the line-element does not admit a multiply transitive group of 
motions. 

Proof  As mentioned in Section 1, conditions I-V imply conditions I, II and 
III*. We can thus use the results of Sections 2 to 4, by requiring that the Ricci 
tensor of the generalized Robinson-Trautman line-element (2.3)-(2.5), as 
given by equations (4.8)-(4.1 2), be algebraically compatible with the perfect 
fluid energy tensor (1.4) in the field equations (1.1). 

Firstly, since 02ol = -½Rab  kamb = 0 [by (4.8)], we conclude from (1.1) 
and (1.4) that the fluid velocity u a satisfies 

uama = 0 

On account of (1.5), u a can thus be expressed in terms of the null tetrad as 

u a = 2-1~2(BId + B - i n  a) (5.1) 

for some positive function B. (The vectors k a and n a are chosen to be future- 
pointing null; the requirement that B is positive ensures that the timelike 
vector u a is also future-pointing). The conditions 0202 - -½Rab mamb = 0 and 
0212 =- --½Rab manb = 0, are then satisfied identically. In addition equation (5.1) 
[with (1.1) and (1.4)] implies that the non-zero components 020o, 0211 and 0222 
must be related according to 

B202oo = 20211 = B-20222 (5.2) 

Once these conditions are algebraically satisfied, the density A and pressure p 
can be calculated using 

A +p = 80211, A - 3p = 24A (5.3) 

as follows from (1.1) and (1.4). 
Condition V (which has as yet not been used) imposes a strong restriction on 

the form of the function B 2. Using (5.I), (4.1) and (2.2) one finds that 

ua = 2-~/2B-1 [(B 2 - U)81 + 6a 21 (5.4) 

Using (1.8), it follows that condition V is equivalent to 

G ( B  z - U ) =  0 = a e ( B  2 - u )  

One concludes that 

B 2 = U+ F(r, U) 

i.e. the (z, ~)-dependence o f  B 2 is the same as that o f  U. Equation (5.4) 
assumes the form 

(5.5) 

Ua = 2-1'2B-l(FSaa + 82a) (5.6) 
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The first of  the compatibility conditions (5.2) can now be written as 

(U + F)(boo = 2cbll 

Using the expressions (4.9) and (4.10) for qSo0 and q511, one obtains, on 
rearranging 

0 = ½U ° 3 r 3rX z + 3 3 u  l n P [ - G X  2 +rOr  0rX 2] + K  

+ [ - ½ X  2 0 r G S + ½ S G G x  2 + F x G G x + G x . G x ]  (5.7) 

On differentiating this equation successively with respect to z and r, only the 
first two terms survive. One finds the key restriction 

(r Oz Ou l n P + O z U ° ) .  O r Or OrX 2 = 0 (5.8) 

We now show that the requirement that space-time does not admit a multiply 
transitive group o f  motions implies that 

IOz 3u lnPI + IGU°I  4:0 (5.9) 

Suppose on the contrary "that 

3z 3u in P = 0 = 3z U o (5.10) 

Since P is real, it must be of the form p(u) .q(z ,  ~). On account of the freedom 
(3.31) in the choice of X, the function p(u) may be absorbed in X in the 
equation (3.32) defining P, and we obtain 

OuP = 0 (5. t 1) 

It follows from (5.7), (5.8) and (5.11) that the quantity K [as defined by 
(4.13)] is constant. This means that the 2-spaces r = const., u = const, are 
spaces of constant curvature and we conclude (Eisenhart, 1961) that space- 
time admits a group of motions multiply transitive on these subspaces. 

With (5.9), equation (5.8) asserts that X z is quadratic in r: 

X 2 = ar 2 + 2br + e (5.12) 

where a, b, c are functions of u. Using (4.4) and (4.9) one immediately finds 
that 

O = - (ar  + b)x -2, q?oo = (b 2 - ae)x -4 (5.13) 

Thus in the presence of a perfect fluid satisfying (1.6) [which is equivalent to 
~oo > 0 on account of (5.2) and (5.3)] we have 

Z = b 2 - ac > 0 (5.14) 

Two cases have to be distinguished. 

Case 1: a = 0 =~b =/= 0 
The coordinate freedom represented by g(u) in (4.18b), and the freedom 

(3.31) in choice of X, can be used to set 

c=O, b=½e (5.15) 
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where 

e = l ~ r > 0  
(5.16) 

e = - i  ~ * r < O  

In this case, by (5.12) and (5.13), 

X 2 = er, p = - ½ r - '  (5.17) 

The remaining coordinate and tetrad freedom is given by (4.18), (4.19) with 
g ( u )  = o. 

Case 2: a 4= 0 
On account of (5.14) the quadratic (5.12) has two distinct real roots. Using 

the coordinate freedom represented by f (u )  and g(u) in (4.18) and the free- 
dom (3.31) in choice of X, one can achieve 

a = e, b = O, c = - e k  2 (5.18) 

with k 4 = 0 a constant and 

e = 1 ~ r  2 > k  s 
(5.19) 

e = - l a ~ r S < k  2 

In this case 

x 2 = e ( r  s - k S ) ,  p = - r ( r  s - / c 2 )  -I ( 5 . 2 0 )  

The remaining coordinate and tetrad freedom in this case is given by (4.18), 
(4.19) with g(u)  = O, f " ( u )  = 0. This concludes the proof of Theorem 5.2. 

We now complete the simplification of the compatibility conditions (5.2), 
subject to (5.9). Until the final stage, the procedure can be carried out indepen- 
dently of the separation into cases 1 and 2. The equations are considerably 
simplified by the fact that we can obtain 

3uX = 0 (5.21) 

[see (5.17) and (5.20).] Until further notice, we will use X 2 in the form (5.12), 
with a, b, c taken to be constants. [The specific values (5.15) and (5.18) wilt 
be used later.] 

The first step is to substitute (5.12) into (5.7). On taking (5.9) and (5.21) 
into account, we conclude that 

aU ° - b Ou l n P + K  = G(u) (5.22) 

and 

½ 3r(X 2 O r S -  S 3rX 2) +FZ, x -z = G(u) (5.23) 

where G(u) is an arbitrary function of u. 
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Equation (5.23) determines the r-dependence orS(r,  u) in terms of that of 

g =/q~/= 0~ 

and in case 2, 

G = O, Hm = O, 

3urn = OuH = OuS ° = 0 

The details are omitted. 

auG = Ou S °  = 0 ~ M (u) = 0 (5.31) 

H ( H  + 2S °) = 0 / ~ M ( u )  = 2eH2Z 2 (5.32) J 

F(r, u). The latter is determined by the second and final compatibility con- 
dition contained in (5.2), which with (5.5) reads 

~22 = (U + F)2~oo 

Using equations (2.4), (4.9), (4.12), (5.12), (5.21) and (5.22) this can be 
written in the form: 

0 = 3 u in P ( - X  2 OrS + S OrX 2 + 2rG) - 2 ( r  Ou in P + U°)F~,x  -2 

-- a + [ - N ( 2 S  + F ) F x  -2 - r OuG - (ar + b)OuS] (5.24) 

where 

g2 =P214Oz OeU ° +b Ou(P-2U°)+½c Ou OuP -21 (5.25) 

Apply 3z and O r successively to (5.24). Only the first two terms survive. On 
making use of (5.22), the remaining terms can be rearranged to yield 

B (r 3z 0u In P + Oz U °) Or (Fx -Z)  = 0 

On account of  (5.9) and (5.14) this implies 

F(r, u) = H ( u ) x  z (5.26) 

We can now immediately write down a first integral of the differential 
equation (5.23): 

2 
X OrS - S 3rX 2 = 2(G - H Z ) r  + re(u) (5.27) 

where m is an arbitrary function ofu. On rearranging the left-hand side, we 
see that S can be written in the form 

S = xZS°(u) + 2(G - I t ~ ) x  2 f rx  -4 dr + m x  2 f X -4 dr (5.28) 

Substitute (5.26) and (5.27) into (5.24). It follows that 

~2 + 2 U ° H E  +m 0 u l n P + M ( u )  = 0 (5.29) 

where 
M(u) = (or + b) OuS + H X ( 2 S  + H x  2) + r OuG (5.30) 

Equation (5.30) must be satisfied identically in r: this imposes restrictions on 
the functions m, G, H and S o which appear in the expression (5.28) for S. The 
exact form of these restrictions depends on whether one is in case 1 or 2. In 
both cases these functions are either constant, or can be made to vanish using 
the remaining coordinate freedom (where applicable) and freedom (3.37) in 
choice of S and U °. In case 1 we obtain 
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In summary, the functions X and S are in both cases completely determined 
(in terms of constants) as functions of r alone. The functions P and U ° depend 
in general on z, ~ and u, and are restricted by the partial differential equations 
(5.22) and (5.29) [with (5.25)]. The results are stated in the following section. 

6. The Line-Elements and Reduced Field Equations 

In this section we give the line-element and reduced field equations (i.e. 
remaining unsolved field equations) for cases 1 and 2 of Section 5. These 
cases contain the general solution o f  the Einstein fieM equations subject to 
conditions I -  V, and the requirement that the metn'c does not  admit  a multiply 
transitive group o f  motions. As remarked in Section 1 the solutions for which 
the line-element does admit a multiply transitive group of motions [charac- 
terized by conditions (5.10)] comprise class II of Stewart & Ellis (1968). The 
general line-element and reduced field equations for these solutions could 
easily be obtained from the results of Sections 2, 4 and 5. We omit the details 
as these results have been given by the above authors, though in a coordinate 
system which differs from the one used here. 

Case 1: p = - ½ r  -1 
The line-element is given [see (2.3), (2.4), (5.15), (5.17), (5.28)] by 

d s  2 = -½ P-2 er dz dg + 2 du(dr - U du) (6.1) 

with 

U=rOu l n P +  U ° +S 

S = erS ° + 2eGr in I r I 

and S °, G being constants. The quantity e equals +1 or -1  depending on 
whether r is in the range r > 0 or r < 0 [see (5.16)]. The function P(z, ~, u) is 
to satisfy 

8P 2 3z 3e l n P -  e 3u InP= 2G (6.2) 

[see (5.22) and (4.13)]. When P is determined, the function U°(z, ~, u) is 
obtained as a solution of 

8 0 z OeU ° + e ~u(U°P -2) = 0 (6.3) 

[see (5.29), (5.31) and (5.25)]. 
The fluid velocity is given by 

Ua = (2 U)-l/23a2 (6.4) 

[see (5.6), (5.26) and (5.3 I)], and the energy density and pressure by 

p = r-l(½ a u l n e  - 4eG - ½eS °) + ½r-2U ° - eGr -1 In Ir I 
(6.5) 

A - p = 2er -1 (4G + S °) + 4eGr -1 In [ r [ 
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[see (5.3), (4.10) and (4.1 I)]. Finally the non-zero Weyl tensor components, as 
given by (4.15)-(4.17), assume the form 

eg2 = - ½  e(G + ½e bu lnP)r  -1 - ~ U°r-2 

q~3 = ( e r ) - l / 2 e ( - ~ z  au l n P + r - 1  az U°) (6.6) 

,Iq = -4e[a~(P 2 ~z au lnP) +r  -1 a,(p2 ~z U°)] 

Case 2: p = - r ( r  2 - k2) -1 
The line-element is given [according to (2.3), (2.4), (5.18), (5.19), (5.22), 

(5.20), (5.28) and (5.32)] by 

ds z = - ½ p - 2 x 2  dz dg + 2du(dr  - U d u )  (6.7) 
with 

X 2 = e(r 2 _ lc 2) 

U = r 3 u  l n P -  e K + S  

S = ×2(S° + m f ×-a dr)+ ek2H 

K = 4P 2 3z be In P 

and S °, m, k, H are constants satisfying the algebraic constraints 

Hm = O, H(H + 2S °) = 0 

The function P(z, ~, u) is to satisfy the partial differential equation 

Pz(4 3z 3eK + ½k 2 ~u 0u p -2 )  _ em ~u lnP  + 2HkZ(K - k 2 H )  = 0 

(6.8) 
[see (5.22), (5.25), (5.29) and (5.32)1. 

The fluid velocity is given [see (5.6) and (5.26)] by 
Ua = (2B2)-1/2(x2H81a + 62) (6.9) 

with 
B 2 = U + x2H 

and the fluid pressure and energy density [see (5.3), (4.10) and (4.11)] by 

P = 2 k 2 x - 4 (  r 3u l n P -  eK + ek2H)  - 2 S ° x - Z ( 3 r  2 - 2k 2) 

- 2 m x  -2 {erx -2 + (3r 2 - 2k 2) f X -4 dr} 
(6.10) 

A - p = 4 S ° x - 2 ( 3 r  2 - k 2) + 4 k 2 H x  -2 

+ 4m×-2{ erx-2 + (3r2 - k2) f ×-4 dr} 

Finally equations (4.15)-(4.17) for the non-zero Weyl tensor components yield 

~2 = ½×-4 [r(em - 2k 2 Ou lnP)  + 2ek2K] - ½X-4(r 2 + k 2 ) e k 2 H  

q23 = 2eP~-a [ - r e  az K + k 2 3z Ou lnP] (6.11) 

qf4 = -4X-2[ r  az(P 2 Oz Ou lnP) - e az(P 2 OAK)] 
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Note that if one sets 

k = O = SO =~ e = l 
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the line-element in case 2 reduces to the Robinson-Trautman (1962) vacuum 
line-element, and the partial differential equation (6.8) yields the correspond- 
ing reduced vacuum field equation. 

In both cases ffs 2 = 0 implies ~3  = ~4  = 0 [see (6.6) and (6,10)]. This 
means that the Weyl tensor is either o f  type [211] or [22], or is zero. There 
are no dust solutions, since p = 0 implies A = 0. 

7. Discussion 

Some insight into a possible interpretation of  the solutions of Section 6 is 
obtained by considering those solutions of  case 1 for which 

G = 0, 3u l n P =  0, e = 1 (7.1) 

The pressure and energy density are then given by 

p = -½ sOt -1 + ½UOr -~ 

A - p = 2S°r  -a 

In order to ensure A - p > 0 we choose S o > 0, and in order that p be positive 
for at least some r ( >  0), we require U ° > 0. 

By means of  a constant change of  scale along the preferred null congruence 
[see (4.18b) with f " (u )  = g(u) = 0] we set 

s O = 2  

and write 

U ° = 2 b  2, b > 0  

By virtue of  (7.1), equation (6.2) implies ~z 0~ In P = 0. We can thus use 
the coordinate freedom (4.18c) to achieve P = 2 -1/2. The line element (6.1) 
then assumes (with z = x + iy) the form 

ds 2 = - r ( d x  2 + d y  2) + 2 du(dr - U du) (7.2) 

with 

U = 2 ( b 2  +r), r > 0  

Ua = ( 2 U ) - 1 / 2 ~  

p = - r  -a + b 2 r  -2, A - p = 4 r  -1 (7.3) 

Note that the fluid congruence is orthogonal to the hypersurfaces r = const. 
Since 2 Oz = Ox - i as,  the differential equation for U ° assumes the form 

(Ox Ox + Oy Oy + Ou)b 2 = 0 (7.4) 
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[Non-trivial (positive) solutions certainly exist, for example, 

b 2 = a 2 cosh fix. cosh 7Y • e-(~2+ v2)u (7.5) 

with ~,/3, 7 constants.] 
The Weyl tensor components (6.6) simplify to 

42  = -½b2r -2, ',I~3 = 21/2 ~zbZr -3/2, ~4  = - 4  3 z bzb2r -1 (7.6) 

In addition we note that the acceleration, shear and expansion of the fluid are 
given (see Stewart & Ellis, 1968, p. 1072) by 

ztaita =-332(b z + r)-2[(b z + r ) - t (bub2)  2 + 16r -1 Oz b2 ~,b 2] 

oabc, ab = ~4(b 2 +r)  -1 [{4r- tb  2 + (b z + r) -1 Oub2} 2 

+ 3r-1(b z +r) -1 3z b2 Deb 2] 

0 = ½(b z + r)-1/2 [6 + 4 r - l b  2 - ½(b z +r) -~ bu b2] (7.7) 

The simplest solution arises when 

b 2 = c o n s t .  

The line-element then admits a multiply transitive group of motions [see (5.10]. 
In this case the coordinate transformation 

u = ½ Z -  t n ( T + b )  

r = r ( r  + 2b) (7.8) 

x = X  

y = Y  

sends the line-element into the form 

ds 2 = - T ( T +  2b ) (dX  2 + d Y 2 ) - ( T + b )  2 dZ  2 + d r  ~ (7.9) 
with 

ua = ~ ,  u ° = ~ 

p = _  T - I ( T +  2b) -1 + b Z T - 2 ( T +  2b) -z (7.10) 

A - p = 4 T - I ( T +  2b) -1 

The restriction r > 0 implies T > 0 or T <  ---2b. We consider the first possibility. 

This line-element describes a homogeneous anisotropic universe of the type 
studied by Doroshkevich (I965), Kantowski & Sachs (1966) and Thorne (1967). 
tn this particular model the universe emerges from a barrel type singularity at 
T= 0 [T(T+ 2b) -+ 0, (T+  b) 2 -+b 2 as T-* 0 +, see Thorne, 1967; Jacobs, 
1968; MacCallum, 1971]. The fluid has zero acceleration, and the shear and 
expansion scalars [see (7.7)] are given by 

OabO ab = ~b 2 [T (T  + b ) ( r  + 2b)] - 2  

02 = (T+ b)-213 + 2b2T-a(T+ 2b)-a] = 
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As T -~ 0 +, aat)o ab and 02 both  behave as T -2 , while as T-~ 0% %boab behaves 
as T -6 and 0 2 as T - L  This confirms the fact (suggested by the form (7.9) of  
the line-element) that  the expansion of  this universe is initially highly aniso- 
tropic but  as T ~ oo it becomes isotropic [OabOab/O 2 ~ 0 as T -~ oo]. One thus 
regards (MacCallum, 1971) the universe as becoming asymptotical ly (i.e. as 
T -* oo) Friedmann (Robertson-Walker).  The form of  this line-element near the 
singularity (T  = 0) has been given by Doroshkevich (1965) [see p. 141, 
equation ( t 4 )  with ?t = ½] and by Thorne (1967) [see p. 64, equat ion (A7a) 
with 2/= 1]. 

The pressure and energy density satisfy an equation of  state of  the form 

4(A + 3p) - b2(A - p)2 = 0 

As T -+ 0 + this approaches the form p = A, and as T -+ ~ ,  the form p = - ½ A ,  
which entails the unsatisfactory feature of  negative pressure [see (7.10)]. 

In view of  the discussion of  this section, it seems reasonable to interpret  
the line-element (7.4) with b 2 v e constant (and the more general line-elements 
of  Section 6) as inhomogeneous, anisotropic model  universes. It is hoped that  
these solutions will provide examples in which one can study the singularities 
and time evolution o f  such model universes. 
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